Section 17950 for State Housing Law, or Health and Safety Code Section 13869.7 for Fire Protection Districts.

Findings and Filings

The city, county, or city and county that wish to amend the current California Building Standards Codes as it pertains to their jurisdiction must make express findings for each amendment, addition or deletion based upon climatic, topographical, or geological conditions.

The city, county, or city and county shall file the amendments, addition or deletions expressly marked and identified as to the applicable findings. Cities, counties, cities and counties, and fire departments shall file the amendments, additions, or deletions and the findings with the California Building Standards Commission at 2525 Natomas Park Drive, Suite 1320, Sacramento, CA 95833.

Findings prepared by fire protection districts shall be ratified by the local city, county, or city and county and filed with the California Department of Housing and Community Development at 1800 3rd Street, Room 260, Sacramento, CA 95814.

Wording

For ease of use, the below listed installation guidelines are worded as requirements. Please remember that these are not legally enforceable requirements, they are just guidelines. To convert these guidelines into a legally enforceable format, a city, county, or city and county must follow the appropriate procedure as explained above.

1.0 MARKING

PV systems must be marked. Marking is needed to provide emergency responders with appropriate warning and guidance with respect to working around and isolating the solar electric system. This can facilitate identifying energized electrical lines that connect the solar modules to the inverter, as these should not be cut when venting for smoke removal.

Materials used for marking must be weather resistant. It is recommended that Underwriters Laboratories Marking and Labeling System 969 (UL 969) be used as standard to determine weather rating. (UL listing of markings is not required).

1.1 Main Service Disconnect

For residential applications, the marking may be placed within the main service disconnect. If the main service disconnect is operable with the service panel closed, the marking should be placed on the outside cover.
For commercial application, the marking should be placed adjacent to the main service disconnect in a location clearly visible from the location where the lever is operated.

1.1.1 Marking Content and Format

- MARKING CONTENT: CAUTION: SOLAR ELECTRIC SYSTEM CONNECTED
- RED BACKGROUND
- WHITE LETTERING
- MINIMUM 3/8" LETTER HEIGHT
- ALL CAPITAL LETTERS
- ARIAL OR SIMILAR FONT, NON-BOLD
- REFLECTIVE, WEATHER RESISTANT MATERIAL SUITABLE FOR THE ENVIRONMENT (durable adhesive materials may meet this requirement)

CAUTION: SOLAR ELECTRIC SYSTEM

1.2 Marking for Direct Current Conduit, Raceways, Enclosures, Cable Assemblies, and Junction Boxes

Marking is required on all interior and exterior DC conduit, raceways, enclosures, cable assemblies, and junction boxes to alert the Fire Service to avoid cutting them. Marking should be placed on all interior and exterior DC conduit, raceways, enclosures, and cable assemblies, every 10 feet, at turns and above and/or below penetrations and all DC combiner and junction boxes.

1.2.1 Marking Content and Format

- MARKING CONTENT: CAUTION SOLAR CIRCUIT
- RED BACKGROUND
- WHITE LETTERING
- MINIMUM 3/8" LETTER HEIGHT
- ALL CAPITAL LETTERS
- ARIAL OR SIMILAR FONT, NON-BOLD
- REFLECTIVE, WEATHER RESISTANT MATERIAL SUITABLE FOR THE ENVIRONMENT (durable adhesive materials meet this requirement)

CAUTION: SOLAR CIRCUIT

1.3 Inverters

The inverter is a device used to convert DC electricity from the solar system to AC electricity for use in the building’s electrical system or the grid.
No markings are required for the inverter.

2.0 ACCESS, PATHWAYS AND SMOKE VENTILATION

Access and spacing requirements should be observed in order to:

- Ensure access to the roof
- Provide pathways to specific areas of the roof
- Provide for smoke ventilation opportunities area
- Provide emergency egress from the roof

Local jurisdictions may create exceptions to this requirement where access, pathway or ventilation requirements are reduced due to:

- Proximity and type of adjacent exposures
- Alternative access opportunities (as from adjoining roofs)
- Ground level access to the roof area in question
- Adequate ventilation opportunities beneath solar array (as with significantly elevated or widely-spaced arrays)
- Adequate ventilation opportunities afforded by module set back from other rooftop equipment (example: shading or structural constraints may leave significant areas open for ventilation near HVAC equipment)
- Automatic ventilation device
- New technology, methods, or other innovations that ensure adequate fire department access, pathways and ventilation opportunities

Designation of ridge, hip, and valley does not apply to roofs with 2-in-12 or less pitch. All roof dimensions are measured to centerlines.

Roof access points should be defined as areas where ladders are not placed over openings (i.e., windows or doors) and are located at strong points of building construction and in locations where they will not conflict with overhead obstructions (i.e., tree limbs, wires, or signs).

2.1 Residential Systems—Single and Two-Unit Residential Dwellings

Plan review is required if a system is to be installed that will occupy more than 50% of the roof area of a residential building.

Examples of these requirements appear at the end of this guideline.

2.1.1 Access/Pathways

a. Residential Buildings with hip roof layouts: Modules should be located in a manner that provides one (1) three-foot (3') wide clear access pathway from the
eave to the ridge on each roof slope where modules are located. The access pathway should be located at a structurally strong location on the building (such as a bearing wall).

b. Residential Buildings with a single ridge: Modules should be located in a manner that provides two (2) three-foot (3’) wide access pathways from the eave to the ridge on each roof slope where modules are located.

c. Hips and Valleys: Modules should be located no closer than one and one half (1.5) feet to a hip or a valley if modules are to be placed on both sides of a hip or valley. If the modules are to be located on only one side of a hip or valley that is of equal length then the modules may be placed directly adjacent to the hip or valley.

2.1.2 Smoke Ventilation

The modules should be located no higher than three feet (3’) below the ridge.

2.2 Commercial Buildings and Residential Housing Comprised of Three (3) or More Units

Exception: If a local fire department determines that the roof configuration is similar to residential (such as in the case of townhouses, condominiums, or single family attached buildings), the local fire department may make a determination to apply the residential access and ventilation requirements.

Examples of these requirements appear at the end of this guideline.

2.2.1 Access

There should be a minimum six foot (6’) wide clear perimeter around the edges of the roof.

Exception: If either axis of the building is 250 feet or less, there should be a minimum four feet (4’) wide clear perimeter around the edges of the roof.

2.2.2 Pathways

Pathways should be established in the design of the solar installation. Pathways should meet the following requirements:
Draft PV Guideline, April 22, 2008

a. Should be over structural members
b. Centerline axis pathways should be provided in both axis of the roof. Centerline axis pathways should run on structural members or over the next closest structural member nearest to the center lines of the roof
c. Should be straight line not less than 4 feet (4') clear to skylights and/or ventilation hatches
d. Should be straight line not less than 4 feet (4') clear to roof standpipes
e. Should provide not less than 4 feet (4') clear around roof access hatch with at least one not less than 4 feet (4’) clear pathway to parapet or roof edge

2.2.3 Smoke Ventilation
a. Arrays should be no greater than 150 by 150 feet in distance in either axis
b. Ventilation options between array sections should be either:
 1. A pathway 8 feet (8’) or greater in width
 2. 4 feet (4’) or greater in width pathway and bordering on existing roof skylights or ventilation hatches
 3. 4 feet (4’) or greater in width pathway and bordering four feet (4’) x 8 feet 8’ “venting cutouts” every 20 feet (20’) on alternating sides of the pathway

3.0 LOCATION OF DIRECT CURRENT (DC) CONDUCTORS
Conduit, wiring systems, and raceways for photovoltaic circuits should be located as close as possible to the ridge or hip or valley and from the hip or valley as directly as possible to an outside wall to reduce trip hazards and maximize ventilation opportunities.

Conduit runs between sub arrays and to DC combiner boxes should use design guidelines that minimize total amount of conduit on the roof by taking the shortest path from the array to the DC combiner box. The DC combiner boxes are to be located such that conduit runs are minimized in the pathways between arrays.

To limit the hazard of cutting live conduit in venting operations, DC wiring should be run in metallic conduit or raceways when located within enclosed specs in a building and should be run, to the maximum extent possible, along the bottom of load-bearing members.

4.0 NON-HABITABLE BUILDINGS
This guideline does not apply to non-habitable structures. Examples of non-habitable structures include, but are not limited to, parking shade structures, solar trellises, etc.

5.0 GROUND MOUNTED PHOTOVOLTAIC ARRAYS
Setback requirements do not apply to ground-mounted, freestanding photovoltaic arrays. A clear brush area of ten feet (10’) is required for ground mounted photovoltaic arrays.